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Abstract
The phase behaviour of a lattice gas confined between two identical plane-
parallel substrates decorated with weakly and strongly adsorbing stripes that
alternate periodically in one transverse direction is explored within mean-
field theory. It is shown that in the limit of zero temperature (T = 0), the
mean-field approximation becomes exact. A modular approach is used to
enumerate the possible structural types of phases (morphologies) that can exist
at T = 0. Analytic expressions for the grand potentials associated with the
morphologies can be obtained and used to determine the exact phase diagram
at T = 0. In addition to the known ‘gas’, ‘liquid’, and ‘bridge’ phases, new
‘vesicle’, ‘droplet’, and ‘layered’ morphologies arise, which were overlooked
in previous studies of this model. These T = 0 morphologies are taken as trial
starting solutions in an iterative numerical procedure for solving the mean-field
equations for T > 0. The complete phase diagram is thus obtained and its
structure is studied as a function of the relative strength of ‘strong’ and ‘weak’
stripes. A key finding is that the number of possible morphologies increases
rapidly with the geometrical complexity of the decoration of the substrate. The
implications for the determination of phase diagrams for very complex confined
systems (e.g. fluids in random porous media) are discussed.

1. Introduction

The emergence of a number of novel techniques in materials science, such as lithography [1,2],
wet chemical etching [3], and microcontact printing [4–6], has permitted the fabrication of
solid substrates with stable, precisely characterized surface structures on length scales ranging
from microns to nanometres. Such chemically decorated substrates play an important rôle in a
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variety of contexts. One of these is the field of microfluidics [7,8] where the wettability of the
substrate surface is modified so as to create chemical lanes along which nanoscopic portions
of fluid may be transported from one site to another, where, for example, they may undergo
chemical reaction with another fluid similarly transported from yet a third site. It is conceivable
that substrates endowed with an integrated network of chemical lanes could function as minute
chemical factories, or chemical ‘chips’ [8]. Another realization of a chemically decorated
substrate is the ‘Janus bead’, a spherical colloidal particle with hydrophilic and hydrophobic
hemispheres separated by a sharply defined equator [9, 10]. The amphiphilic Janus beads can
be used to stabilize oil–water interfaces [9].

The potential importance of structured substrates in the manipulation of fluids at very short
length scales has spurred a parallel theoretical interest in the behaviour of such confined fluids.
Fluids constrained by chemically decorated substrates have an especial curiosity on account of
their expected complex phase diagrams. A prototypical case consists of fluid confined between
identical plane-parallel substrates, each decorated with weakly and strongly attractive stripes
that alternate periodically in one direction (say x) parallel with the interface. The stripes are
infinite in the other transverse direction (y). Röcken and co-workers [11,12] first demonstrated
the existence of a ‘bridge’ phase in this type of system. In more recent work we have explored
the properties of the bridge phase in some detail [13–17]. The bridge phase, a new type of
phase distinct from the gas and liquid phases known to form between substrates that are strictly
homogeneous in transverse dimensions, comprises high- and low-density regions separated by
an interface perpendicular to the substrates. The interface resembles the one at bulk liquid–gas
coexistence [13]. Thus, bridge phases are inhomogeneous in the direction perpendicular to the
interface. In the direction perpendicular to the substrate plane the high(er)-density portion of
a bridge phase is stratified; that is, molecules arrange themselves in individual layers parallel
with that plane. Coexistence between gaslike, liquidlike, and bridge phases depends crucially
on the chemical corrugation of the decorated substrate, that is on the relative widths of the
weakly and strongly adsorbing stripes [14,15]. By virtue of the geometry of the substrates and
the inhomogeneity of bridge phases, the latter can be subjected to shear strains by misaligning
the former [17].

However, as we shall demonstrate below, the phase behaviour of the prototypal model is
considerably richer than has been realized in any of the preceding studies [11–17]. For example,
lanes of liquid (‘droplets’) may form along the attractive stripes, which are thermodynamically
stable over a wide temperature range. Structurally these lanes are akin to those observed
in [18, 19], even though the latter exist on µm (rather than nm) length scales. Yet another
phase may be described as ‘vesicular’, where low-density tunnels over the weak stripes are
immersed in high(er)-density fluid. In addition, one encounters layering transitions depending
on the relative difference between the strength of the attraction of weak and strong stripes.

The question that we address here concerns the completeness of the phase diagram. That
is, given a specification of the chemical decoration, can we determine all the possible structural
types of phase (to which we shall refer subsequently as ‘morphologies’) of the confined fluid
that can exist (or coexist)? We have sought a partial answer to this question by exploring the
phase behaviour of the chemically striped prototype described above within the framework of
the lattice gas. Here we follow the seminal paper by Pandit et al [20], emphasizing the limit
of zero temperature (T = 0), where the above problem can be investigated analytically. From
the limit T = 0 we deduce suitable starting conditions for a subsequent mean-field treatment
for T > 0.

In section 2 we describe the lattice-gas model for confined fluids (of which the prototype
is a special case) and derive an explicit expression for the exact grand potential at T = 0. We
present a mean-field treatment of the model in section 3, demonstrating that the mean-field
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grand potential becomes exact in the limit of vanishing temperature. Section 4 is devoted to
the enumeration of the possible morphologies (i.e., morphologically distinct phases) of the
prototype at T = 0. We also show how the phase equilibria among morphologies can be
determined analytically in this limit. Section 5 presents the results (e.g., phase diagrams) of
numerical solutions of the mean-field equations for T > 0. Section 6 concludes the paper with
a summary of our findings and a discussion of their implications.

2. Lattice model

We consider a fluid made up of structureless (spherically symmetric) molecules, the positions
of which are constrained to the sites of an nx × ny × nz simple cubic lattice, with lattice
constant � infinitesimally larger than the molecular diameter. Any site can be occupied by
at most a single molecule. This restriction reflects the infinite hard-core repulsion between
molecules. The intermolecular interaction is described by a square-well potential, where the
depth and width of the attractive well are εff and �, respectively. This is equivalent to taking
only nearest-neighbour interactions into account. We also assume that the fluid is confined in
the z-direction between two plane-parallel substrates. The interaction of a molecule at site i
with the substrates is represented by the potential energy �i . Thus, the total potential energy
of the lattice gas in a given configuration can be written as

U = −εff

2

N∑
i=1

ν(i)∑
j �=i

sisj +
N∑
i=1

�isi (2.1)

where si stands for the occupation number of site i, which can be 0 (empty site) or 1 (occupied
site), N = nxnynz is the number of lattice sites, and ν(i) is the number of nearest neighbours
(ν(i) = 5 or 6, depending on the location of site i).

The grand partition function for the confined lattice gas can be expressed as

� =
∑

s

exp

{
−β

[
−εff

2

N∑
i=1

ν(i)∑
j �=i

sisj +
N∑
i=1

�isi − µ

N∑
i=1

si

]}
(2.2)

where the sum is over all sets of occupation numbers s = {s1, s2, . . . , sN }. In equation (2.2)
β = (kBT )

−1 and µ is the chemical potential. We note that this model has been previously
employed in studies of wetting of homogeneous walls [21–23] and of adsorption in slit pores
with chemically heterogeneous substrates [15–17].

The grand partition function given in (2.2) can be rewritten as

� = exp[−βt(s0)]

(
1 +

∑
s �=s0

exp{−β[t (s)− t (s0)]}
)

(2.3)

where

t (s) ≡ −εff

2

N∑
i=1

ν(i)∑
j

sisj +
∑
i

[�i − µ]si (2.4)

and we suppose that the set of occupation numbers s0 is the one for which t (s) is minimum,
i.e., t (s) > t(s0) for all s �= s0. From (2.3) we obtain for the grand potential �

� = −β−1 ln� = t (s0)− β−1 ln

{
1 +

∑
s �=s0

exp(−β[t (s)− t (s0)])

}
. (2.5)

As T → 0, the logarithmic term in (2.5) vanishes, leaving

� = t (s0) = −εff

2

N∑
i=1

ν(i)∑
j �=i

si0sj0 +
N∑
i=1

[�i − µ]si0. (2.6)



4700 H Bock et al

3. Mean-field theory

3.1. The grand potential

To obtain a closed expression for the grand potential of a lattice gas at non-zero temperature
we utilize the classical version of the Bogoliubov theorem [24, 25], which states

� � �(0) + 〈U − U(0)〉0 (3.1)

where � is the exact grand potential for the system of interest whose configurational energy
is U and �(0) is the (exact) grand potential for a reference (unperturbed) system whose
configurational energy isU(0). The ‘correction’ 〈U−U(0)〉0 is determined as a grand canonical
ensemble average over the states of the reference system.

In the present case of the nearest-neighbour lattice-gas model, U is given by (2.1). For
the reference system we take

U(0) =
N∑
i=1

�isi (3.2)

where �i is an a priori unknown external reference potential to be determined by minimizing
the right-hand side of (3.1). From (2.2) we have by analogy

�(0) =
∑

s

exp

{
−β

[∑
i

(�i − µ)si

]}
=

N∏
i=1

1∑
si=0

exp{−β(�i − µ)si}

=
N∏
i=1

{1 + exp[−β(�i − µ)]} (3.3)

where the second equality follows from the independence of the si . The correction is given by

〈U − U(0)〉0 = −εff

2

N∑
i=1

ν(i)∑
j �=i

ρiρj +
N∑
i=1

(�i −�i)ρi (3.4)

where ρi ≡ 〈si〉0 is the mean occupation number (equivalent to the dimensionless local density
in units of �−3). It is given in terms of the external reference potential by the relation

ρi = 1

1 + exp[β(�i − µ)]
(3.5)

which, when combined with (3.1) and (3.4), leads to

� � �[ρ] ≡ β−1
N∑
i=1

[ρi ln ρi + (1 − ρi) ln(1 − ρi)] − εff

2

N∑
i=1

ν(i)∑
j �=i

ρiρj +
N∑
i=1

(�i − µ)ρi

(3.6)

where �[ρ] stands for the functional of the unknown densities on the right-hand side of (3.6).
These and the best estimate of� are determined by minimizing�[ρ], which is an upper bound
on the exact grand potential. That is, we require

δ�[ρ]

δρi
= 0 i = 1, . . . ,N . (3.7)

From (3.6) and (3.7), we obtain

β−1 ln
ρi

1 − ρi
− εff

ν(i)∑
j �=i

ρj +�i − µ = 0 i = 1, . . . ,N . (3.8)

These coupled transcendental equations are identical with (A6) in [17] and can be solved
numerically as detailed in this latter work.
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3.2. The limit T = 0

In the limit of vanishing temperature, the mean-field treatment becomes exact. To demonstrate
this we begin by examining the bulk system (� ≡ 0), for which all ρi are equal by symmetry.
Equation (3.8) then simplifies to

β−1 ln
ρ

1 − ρ
− 6εffρ − µ = 0 (3.9)

where ν(i) = 6. In the customary dimensionless units (distance in units of �, energy in units
of εff , temperature in units of εff/kB), equation (3.9) can be recast as

ρ = 1

6
(T x − µ) (3.10)

where we have introduced the definition of x:

ρ =:
1

1 + exp(−x) . (3.11)

Plotting ρ and (T x−µ)/6 versus x for the case T < Tc = 3
2 and µ = µc = −3 (where Tc and

µc are the temperature and chemical potential at the bulk critical point), we find that (3.10)
has three real roots −x0, 0, and x0 corresponding to the densities 1 − ρ(x0), 1

2 , and ρ(x0),
respectively. Evaluating the second derivative of � with respect to ρ for the solution ρ = 1

2 ,
we obtain

∂2�(ρ)

∂ρ2

∣∣∣∣
ρ=1/2

= T

ρ(1 − ρ)

∣∣∣∣
ρ=1/2

− 6 = 4T − 6 (3.12)

which is negative for all T < Tc. Hence � has a maximum at ρ = 1
2 , which corresponds to

an unstable thermodynamic state. The remaining solutions are minima and, in the light of the
symmetry inherent in the expression for � (see (3.6)) when µ = µc, it is clear that �[ρ(x0)]
and �[1 − ρ(x0)] are the equal values of the grand potential of coexisting ‘gas’ and ‘liquid’
phases. Furthermore, it is clear from (3.11) that in the limit T = 0 (x0 = ∞),

lim
x0→∞ ρ(x0) = lim

x0→∞(1 + e−x0)−1 = 1

and therefore 1 − ρ(x0) = 0. By a similar analysis we obtain for the limiting (T = 0) stable
solutions of equation (3.10) for µ > µc and µ < µc the respective values ρ = 1 (liquid) and
ρ = 0 (gas). We conclude that, regardless of the value of the chemical potential, the only
stable solutions of (3.10) are these two, respectively corresponding to the completely filled
and completely empty lattice. This is precisely the conclusion reached from the exact limiting
expression (2.6) for the bulk system:

�0 = −N (3s2
0 + µs0). (3.13)

We thus arrive at the gratifying result that, for the bulk system, the mean-field approximation
agrees with the exact result at T = 0.

The above reasoning can be extended to the situation of primary interest here: the fluid
is constrained in one dimension (z) by plane-parallel substrates that are chemically decorated
with weakly and strongly adsorbing stripes that alternate periodically in the x-direction, so the
external potential depends only on x and z (see figure 1). Thus, for given values of x and z the
occupation numbers do not vary with the y-coordinate of the lattice site. That is, by symmetry
all densities ρi along lines parallel with the y-axis are equal. Thus, using (3.8) we can write
for a particular site i

β−1 ln
ρi

1 − ρi
− 2εffρi − εff

∑
j=1

ρj +�i − µ = 0 (3.14)
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Figure 1. A schematic diagram of the prototypal model: cubic lattice gas confined between
substrates consisting of strongly attractive stripes alternating periodically with weakly attractive
ones. The dashed lines demarcate the four types of region (slabs) of the ‘heterogeneous’ module:
central slabs (0) in weak (w) and strong (s) ‘homogeneous’ modules; outer slabs (1) in weak (w)
and strong (s) ‘homogeneous’ modules. A molecule in the central region (black circle) interacts
with its six nearest neighbours (the four in the x–z plane are depicted as grey circles; the two in the
y-direction are not shown). Sites at which a molecules is subject to the strong attractive substrate
(�i = −εfs) are indicated by dark grey squares; those at which a molecule is subject to the weak
attractive substrate (�i = −εfw) are denoted by light grey squares.

where the factor of 2 comes from the two neighbours in the y-direction and the ρj are the
(a priori unknown) densities of the four (or three) nearest-neighbour sites in the x–z plane.
Using the definition of x given in (3.11), we can rewrite (3.14) in dimensionless variables as

ρi = T x

2
− η

2
(3.15)

where the parameter η is defined by

η := µ−�i +
∑
j

ρj . (3.16)

Since (3.15) assumes the same form as (3.10) for the bulk system, the same reasoning may be
applied to allow us to conclude that in the limit T = 0, the only stable solutions of (3.15) are
ρ = 0 and 1, irrespective of the value of η. Therefore, at T = 0 all of the sites along lines
parallel with the y-axis are either empty or filled. The stable solution of the overall problem
is the set {ρ0

i } which minimizes the functional

�[ρ0
i ] = −εff

2

N∑
i=1

ν(i)∑
j �=i

ρ0
i ρ

0
j +

N∑
i=1

[�i − µ]ρ0
i (3.17)

where all the ρ0
i are either 0 or 1. Again, this conclusion is exactly in accord with (2.6). The

set of stable solutions of (3.17) or, equivalently, (2.6), constitute the ‘morphologies’ at T = 0.
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4. Phase behaviour at T = 0

4.1. Morphologies in the limit T = 0

Following Pandit et al, we now consider the limit of vanishing temperature. This is helpful in
enumerating the possible morphologies, whose number may be quite large in the case where
� is spatially complex. Moreover, in the limit T = 0 the phase equilibria (i.e., the values of
the chemical potential at which morphologically distinct phases coexist) can be determined
analytically.

Our recipe for identification of the possible morphologies is based on a modular approach
in which we construct a hierarchy of increasingly complex modules sequentially from simpler
ones, starting from the bulk. Any module, which gives rise to a set of morphologies {M},
consists of a juxtaposition of one or more of the previous (simpler) modules. The grand
potential of a given morphology within the more complex module can be expressed as a sum
of the grand potentials of the simpler ones, plus corrections which account for the breaking of
bonds between nearest neighbours in the simpler modules and the making of new bonds across
the interfaces between modules that make up the composite (more complex) module. The sum
of all of these contributions determines the number and stability of the possible morphologies.

4.1.1. Bulk lattice gas. In the simplest case, � ≡ 0 and all sites are equivalent. Thus,
equation (2.6) reduces to

�b = −N (3εffs
2
0 + µs0) := Nω0. (4.1)

In equation (4.1), ω0 is the grand-potential density of the bulk lattice gas. Because s0 is
double-valued, equation (4.1) gives two possible morphologies, namely a ‘gas’ characterized
by �

g
b = 0 corresponding to an entirely empty lattice (s0 = 0) and a ‘liquid’ for which

�l
b = −N (3εff + µ) when all sites are occupied (s0 = 1). Gas and liquid phases may coexist

at µgl defined through

�
g
b −�l

b =: �gl
b = 0 = N (3εff + µgl) (4.2)

from which µglε−1
ff = −3 is easily deduced. Thus, for µ < µgl, gas is the thermodynamically

stable phase, whereas for µ > µgl liquid is the stable phase.

4.1.2. Hard substrates. The next slightly more complicated situation is one in which a lattice
gas is confined in the z-direction by two planar hard substrates represented by

�i ≡ �hs(zi) =
{

∞ zi < 1 and zi > nz

0 1 � zi � nz.
(4.3)

According to our modular approach the confined lattice gas may be viewed as a bulk system,
in which �hs(z) serves to introduce ‘surfaces’. We can then express the grand potential of the
confined phase as

�hs = �b +"� (4.4)

where�b pertains to the bulk module and the correction"� accounts for the interactions that
are missing for molecules in the surface planes z = 1 and z = nz. Since each nearest-neighbour
interaction contributes −εffs

2/2 to the configurational energy of the original bulk module, there
are nxny molecules in each surface, and there are two surfaces, the total correction is nxnyεffs

2.
We can therefore rewrite (4.4) as

�hs = nxnynzω0 + nxnyεffs
2
0 (4.5)
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whereω0 is defined by (4.1). However, since s0 = 0 or 1, no new morphologies arise. The only
effect of confinement is an upward shift in the chemical potential at gas–liquid coexistence.
By solving the analogue of (4.2), �g

hs = �l
hs, we obtain µglε−1

ff = −3 + 1/nz. As expected,
this shift vanishes in the limit of large substrate separations (i.e., as nz → ∞).

4.1.3. Chemically homogeneous substrates. The situation discussed in section 4.1.2 becomes
slightly more complicated if one replaces (4.3) by

�i ≡ �hom(zi) =




∞ zi < 1 and zi > nz

−εfs zi = 1 and zi = nz

0 2 � zi � nz − 1

(4.6)

i.e. by chemically homogeneous substrates capable of attracting the lattice gas in addition to
merely confining it. It is therefore convenient to introduce an effective chemical potential

µeff
i := µ−�i (4.7)

to which different regions of the confined lattice gas are subject. The concept of an effective
chemical potential is useful because it permits one to distinguish between the two regions
(slabs) governed by µeff

0 (zi) (2 � zi � nz−1) and µeff
1 (zi) (zi = 1, zi = nz). The subscripts 0

and 1 on µeff now refer to all sites in the regions {zi |2 � zi � nz−1} and {zi |zi = 1, zi = nz}.
The possible morphologies of the lattice gas confined between homogeneous attractive

substrates can thus be determined by sandwiching an nx ×ny ×(nz−2) hard-substrate module
(which consists of a slab of uniformly occupied (s = 0 or 1) sites) between two nx × ny × 1
hard-substrate modules (i.e., identical thin slabs of nxny uniformly occupied sites). Using
the modular principle, we can express the grand potential of the composite ‘homogeneous’
module as

�hom = �
[0]
hs + 2�[1]

hs +"� (4.8)

where

�
[0]
hs := nxny[(nz − 2)ω0 + εffs

2
0 ]

�
[1]
hs := nxny[ω1 + εffs

2
1 ]

(4.9)

and �hs stands for the grand potential of the previous member of the hierarchy of modules,
namely a slab between hard substrates. The index 0 denotes the central module at µeff

0 ≡ µ,
while the index 1 pertains to the other two (identical) modules at µeff

1 = µ + εfs. Since
�hs already accounts for the breaking of bonds to create free surfaces (see the discussion in
section 4.1.2), the correction "� in (4.8) is due solely to the formation of bonds across the
two interfaces and is given by −2nxnyεffs0s1. Therefore, we can rewrite (4.8) as

�hom = nxnyψ (4.10)

where

ψ := 2(ω1 + εffs
2
1 ) + (nz − 2)ω0 + εffs

2
0 − 2εffs0s1. (4.11)

Since s0 and s1 can assume values 0 or 1 independently, four different morphologies arise from
the homogeneous module. These can be identified by sets of occupation numbers M = {s0, s1},
where s0 = 0 or 1 and s1 = 0 or 1 are the uniform occupation numbers over the central and
outer slabs, respectively. For example, Mg = {0, 0} corresponds to gas, and Mm = {0, 1}
to a monolayer film on each substrate. The grand potentials �α associated with the possible
morphologies Mα can be determined from (4.10) in closed form, where�α is a linear function
of µ. Thus, the values of the chemical potential at which morphologies (say α and β) can
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coexist are determined by the intersection between�α and�β , that is where�α = �β . (Note
that the intersection must lie below all other curves�γ for other morphologies.) The locations,
as well as the total number of intersections, depend on the parameters of the model (i.e., nz,
εfs/εff , etc). In section 5.2.2 we see that the monolayer film can indeed become the stable
phase when εfs/εff = 1.5.

4.1.4. Chemically heterogeneous substrates. Consider now the prototype: a lattice gas
between substrates decorated with strongly attractive stripes (well depth εfs) that alternate
periodically with weakly attractive stripes (well depth εfw) in the x-direction. Within one
period the potential can be represented as

�i ≡ �het(xi, zi) =




∞ zi < 1 and zi > nz{
−εfs 1 � xi � ns

−εfw ns < xi � nx
zi = 1 and zi = nz

0 2 � zi � nz − 1.

(4.12)

Again following the modular principle, we can enumerate the possible morphologies by
juxtaposing (in the x-direction) two modules corresponding to the previous, simpler one: the
lattice gas between homogeneous attractive substrates. Thus, we can write the grand potential
as

�het = �
[w]
hom +�[s]

hom +"� (4.13)

where from (4.10)

�
[u]
hom = nunyψu u = s,w (4.14)

and from (4.11)

ψu = 2(ωu
1 + εffs

u
1s

u
1 ) + (nz − 2)ωu

0 + εffs
u
0s

u
0 − 2εffs

u
0s

u
1 u = s,w. (4.15)

�
[s]
hom and�[w]

hom are the grand potentials of the lattice gas between strongly attractive substrates
of width ns and between weakly attractive substrates of width nw = nx − ns. Note that the
regions of the composite module now carry two indices, one denoting the strength of the
attraction (w or s) and the other denoting the particular slab of the ‘homogeneous’ module (0
referring to the central slab and 1 to the outer slabs).

The correction in (4.13) can be derived as follows. We must first create surfaces by
breaking bonds between nearest neighbours across a plane (parallel with the y–z plane)
in the ‘homogeneous’ module. This process increases U (and hence �) by the amounts
nyεff [2su

1s
u
1 + (nz − 2)su

0s
u
0 ] for weak (u = w) and strong (u = s) substrates. We must then

join the strong and weak ‘homogeneous’ modules by forming bonds across the interfaces. This
joining decreases U by nyεff [2sw

1 s
s
1 + (nz − 2)sw

0 s
s
0]. Thus, the total grand potential for the

‘heterogeneous’ module can be expressed as

�het = ny[nsψs + nwψw + χss + χww − 2χsw] (4.16)

where

χuu = εff [2s
u
1s

u
1 + (nz − 2)su

0s
u
0 ] u = s,w

χsw = εff [2s
w
1 s

s
1 + (nz − 2)sw

0 s
s
0].

(4.17)

A consequence of the lower symmetry of the prototype is a larger number of possible
morphologies. Inspection of (4.15)–(4.17) reveals that the grand potential is determined by
the set M := {sw

0 , s
s
0, s

w
1 , s

s
1}, where each occupation number can independently assume the

value 0 or 1. Thus, 16 different morphologies are possible in principle. This fairly large
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number can be reduced substantially on physical grounds (i.e. by taking into account the
relative magnitudes of εfs, εfw, and εff ). For example, if both εfs and εfw are small compared
to εff , the morphology characterized by M = {0, 0, 1, 1} is physically not sensible because it
refers to a situation where sites at which the lattice gas is exposed to a reduced total attraction
(i.e., in the immediate vicinity of the substrate) are occupied whereas energetically more
favourable (nz − 2) bulk sites remain empty. By similar considerations most of the remaining
morphologies can be ruled out, without the necessity of calculating their grand potentials.

4.2. Thermodynamically stable morphologies at T = 0

The analysis of potentially possible morphologies of the prototype in section 4.1.4 can now be
employed to construct the phase diagram at T = 0. Henceforth we employ the dimensionless
units defined in section 3.2

As an example we consider the case ns = nw = 10 (nx = 20), nz = 10, εfw = 0.0,
and 0.0 � εfs � 2.0. With the aid of figure 1 it can be seen that the only physically
sensible morphologies are characterized by Mg = {0, 0, 0, 0} (empty lattice, i.e. ‘gas’),
Ml = {1, 1, 1, 1} (full lattice, i.e. ‘liquid’), Md = {0, 0, 0, 1} (liquid-filled lanes stabilized
by strongly adsorbing stripe, i.e. ‘droplets’), Mb = {0, 1, 0, 1} (a fluid ‘bridge’ connecting
strongly adsorbing stripes), and Mv = {1, 1, 0, 1} (gas-filled lanes immersed in high-density
fluid, i.e. ‘vesicles’). Explicit expressions for the grand potentials for these morphologies are
derived in appendix A.

Thermodynamic consistency requires the inequality

(
∂ �

∂µ

)
T

= −N � 0 (4.18)

to hold for any morphology, where N < N is the number of occupied sites. For T = 0, N is
independent of µ. In other words, because each morphology is in its ground state, there are
no density fluctuations. That is,

(
∂ 2�

∂µ2

)
T=0

= 0 (4.19)

so the curve �(µ) is a straight line with negative slope for each morphology (see figure 2(a)).
The curves plotted in figure 2(a) indicate that the higher the average density of the lattice gas
is, the larger is the magnitude of the slope of �(µ), as one would expect from (4.18).

On account of the different slopes of �(µ) for the various morphologies considered in
figure 2, one expects intersections µαβ between αβ-pairs of grand-potential curves defined via

�α(µαβx ) = �β(µαβx ). (4.20)

We can solve (4.20) analytically for µαβx using the explicit expressions for �α(µ) given in
appendix A, although for the sake of conciseness we refrain from displaying the solutions.
However, it seems worthwhile noting that for εfw = 0, µgβ

x depends linearly on εfs regardless
of β. That is, with increasing εfs, µ

gβ
x is shifted to more negative values. At the same time,

µ
αβ
x (α, β �= g) is independent of εfs. Thus, if for a given substrate geometry (i.e., nx , nz, ns)

µ
αβ
x refers to coexistence between metastable (non-gas) morphologies, these can never become

stable at T = 0, no matter how great the attraction of the ‘strong’ stripe becomes.
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Figure 2. The grand potential �α(µ)/ny versus chemical potential µ for various morphologies
α = g (gas), d (droplet), b (bridge), v (vesicle), and l (liquid) indicated in the figure. In all cases,
εfs = 1.0, εfw = 0.0. (a) T = 0, (b) T = 0.6, (c) T = 0.9, (d) T = 1.2.

5. Phase behaviour for T > 0

5.1. Grand-potential curves for T > 0

For T > 0 analytic determination of the phase diagram is no longer possible. Instead we
solve (3.8) numerically by the iterative procedure detailed in [17], using the morphologies at
T = 0 as starting solutions. Once the set ρ := {ρ1, ρ2, . . . , ρN } has been determined the
grand potential can be obtained from (3.6).

To investigate the effects of varying T we consider the case εfw = 0.0 and εfs = 1.0, where
the interaction of a molecule with the ‘weak’ stripe is purely repulsive (i.e., hard substrate)
and the interaction with the ‘strong’ stripe is characterized by εfs ≡ εff . Thus, for molecules
located at sites in the planes z = 1 and z = nz, the interaction with the ‘strong’ stripes exactly
compensates for the interaction with the nearest neighbour that has been lost on account of the
creation of the ‘surfaces’ of the hard-substrate module. Figure 2(a) shows that for T = 0 a
triple point µgbl

tr = −3.000 exists at which gas, liquid, and bridge phases coexist. Following
the evolution of �α(µ) for physically sensible morphologies, one notices from the plot in
figure 2(b) that for T = 0.6 the triple point has given way to a narrow one-phase region
−3.004 < µ < −2.998 in which bridge phases are thermodynamically stable. Hence, for
{(T , µ)|T = 0.6, µ < −3.004} the gas phases are thermodynamically stable whereas this is
the case for the liquid phases over the range {(T , µ)|T = 0.6, µ > −2.998}.

This picture changes substantially for T = 0.9 (figure 2(c)). Now the gas phases
are stable for thermodynamic states {(T , µ)|T = 0.9, µ < −3.044}. Over the range
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{(T , µ)|T = 0.9,−3.044 < µ < −3.010} the droplet morphology (Md = {0, 0, 0, 1} for
T = 0) represents the thermodynamically stable phase. At µgd

x = −3.044 gas and droplet
phases coexist. The region of bridge phases, {(T , µ)|T = 0.9,−3.010 < µ < −2.990},
has considerably widened compared with T = 0.6 (figure 2(b)). Bridge and droplet phases
coexist at µdb

x = −3.010 whereas bridge and vesicle phases (Mv = {1, 1, 0, 1} for T = 0)
coexist at µbv

x = −2.990. Vesicle phases are thermodynamically stable over the range
{(T , µ)|T = 0.9,−2.990 < µ < −2.956}, eventually coexisting with liquid atµvl

x = −2.956,
which is then stable for all larger chemical potentials.

For an even higher temperature T = 1.2 one deduces from figure 2(d) that only
gas, bridge, and liquid phases are thermodynamically stable over the respective ranges
{(T , µ)|T = 1.2, µ < −3.013}, {(T , µ)|T = 1.2,−3.013 < µ < −2.988}, and
{(T , µ)|T = 1.2, µ > −2.988} where µ

gb
x = −3.013 and µbl

x = −2.988. One also
realizes from figure 2(d) that (∂2�/∂µ2)T < 0 corresponding to a non-vanishing isothermal
compressibility κT > 0 for all three phases. At µgb

x and µbl
x , κT changes discontinuously but

remains finite as expected.

5.2. Phase diagrams

5.2.1. The case εfw = 0.0, εf s > 0.0. From the consideration of grand-potential curves
in section 3.1 we are now in a position to determine lines of discontinuous phase transitions
(i.e., coexistence lines) through the analogue of (4.20)

�α[µαβx (T )] = �β[µαβx (T )] (5.1)

where µαβx (T ) stands for the coexistence line, that is the set of values of the chemical potential
at which morphologies α and β coexist at temperature T . The phase diagram can then be
represented by

µx(T ) =
⋃
α,β

µαβx (T ) ∀α �= β (5.2)

i.e. the union of all coexistence lines between all pairs of morphologies. Thus, one can perceive
µx(T ) as a ‘web’ of coexistence lines, whose structure depends implicitly on system parameters
εfw, εfs, nw, ns, and nz. As these parameters vary, the web evolves. Figure 3 illustrates the
impact of increasing attraction between the lattice gas and the ‘strong’ stripe. For εfs = 0.5
figure 3(a) reveals a tiny one-phase region for bridge phases indicated by the bifurcation in
µx(T ) at T � 1.375. The coexistence lines involving bridge phases terminate at the respective
critical temperatures T gb

c � 1.461 and T bl
c � 1.440. One also notes a bifurcation in µx(T ) at

T � 0.980, indicating the existence of a vesicle phase. The vesicle–liquid coexistence line
ends at its critical temperature T vl

c � 1.005.
Increasing the fluid–substrate interaction to εfs = 1.0 (figure 3(b)) causes µx(T ) to move

down to lower chemical potentials compared with the plot in figure 3(a). The gas–bridge–
liquid triple point has also shifted all the way to T = 0 (see also figure 2(a)), so the one-phase
region of bridge phases is now much wider compared with the case εfs = 0.5. At the same
time T vl

c has not changed at all but the coexistence line µvl
x (T ) is longer now. However, a

new bifurcation appears at T =� 0.815, which corresponds to the appearance of a droplet
phase that can coexist with gas or bridge phases. We note that the phase diagram appears to
be precisely symmetric about the line µc = −3.

For even larger εfs = 1.1 one sees from figure 3(c) that the gas–bridge–liquid triple point
vanishes; that is, even for T = 0 a range of chemical potentials exists over which bridges are
the thermodynamically stable phases. This effect results from a lowering of the temperature at
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Figure 3. Phase diagrams in the µ–T representation for εfw = 0. (a) εfs = 0.5, (b) εfs = 1.0, (c)
εfs = 1.1, (d) εfs = 1.2, (e) εfs = 1.5. �: analytical solution for T = 0.

which the ‘droplet’ bifurcation occurs, along with a shift of µgb
x (T ) and µgd

x (T ) toward lower
values of µ for T < T

gd
c . As before, however, all four critical temperatures remain unaltered.

A slight further increase of the strength fluid–substrate attraction to εfs = 1.2 eventually
causes µgd

x (T ) to become detached from the other coexistence lines as the plot in figure 3(d)
clearly shows. The remainder of the phase diagram appears to be unaffected by the increase of
εfs. Consequently, one finds three chemical potentials for T = 0 at which pairs of phases (i.e.,
gas–droplet, droplet–bridge, bridge–liquid) coexist. The one-phase region of droplet phases
is already quite large. It increases further if the interaction of the lattice gas with the ‘strong’
stripe is increased to εfs = 1.5 (see figure 3(e)). For this value of εfs one notices the appearance
of a very short additional coexistence line beginning at T bd2

tr � 1.001 and µ � −3.027 with
negative slope. An inspection of the local densities indicates that this coexistence line reflects
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layering transitions between droplet phases and new bilayer droplet phases (2) localized at the
‘strong’ stripe. The layering transitions disappear at a critical temperature T d2

c � 1.035.

5.2.2. The case εf s > 0, εfw > 0. Plots in figure 4 illustrate variations of µx(T ) with
increasing interaction between lattice gas and the ‘weak’ stripe. Comparing figure 4(a) with
figure 4(b) one notices that µgd

x (T ) starting at µ = −3.400 for T = 0 remains unaffected.
However, the vesicle and layered phases, both visible in figure 4(a), disappear. At the same time
the triple-point temperature corresponding to droplet–bridge–liquid coexistence is significantly
raised to T dbl

tr � 1.310.
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Figure 4. As figure 3, but for εfs = 1.5. (a) εfw = 0.0, (b) εfw = 0.5, (c) εfw = 1.0, (d) εfw = 1.5.
Open and filled circles in figure 4(c) signify thermodynamic states for which local densities are
plotted in figure 6(a) and figure 6(b), respectively. �: analytical solution for T = 0.

As εfw increases further to 1.0, plots in figure 4(c) show thatµgd
x (T ) is still unaffected. On

the other hand, the bifurcation appearing in figure 4(b) apparently shifts to a temperature
of about 0.817. However, an inspection of the phase diagrams in the equivalent T –ρ
representation in figure 5(a) and figure 5(b) shows that the bifurcation temperature is actually
not associated with bridge phases, which have already become metastable for this εfw (see
figure 5(b)). Instead the coexistence line branching off at T dml

tr � 0.817 corresponds to a line
of discontinuous transitions between droplet phases and a monolayer (m) phases adsorbed on
the entire substrate (see figure 6(a), figure 6(b)) and may thus be regarded as a different type
of layering transition triggered predominantly by the ‘weak’ part of the substrate.

If εfw = 1.5 the decorated substrate degenerates to a chemically homogeneous one wetted
by the lattice gas. In this case µx(T ) consists of µgm

x (T ) ending at T gm
c � 1.018 and µml

x (T )

terminating at its critical temperature T ml
c � 1.452 < T bulk

c = 3
2 on account of confinement
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corresponding to figure 4(a) and figure 4(c), respectively. �: analytical solution for T = 0. Note
that in the immediate vicinity of the critical points the phase diagram could not be determined
because of the failure of the numerical method to converge (see [17]).
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Figure 6. The local density ρ(x, z) of lattice gases between prototypal chemically decorated
substrates (see figure 1) where εfw = 1.0, εfs = 1.5, and T = 0.9 (see figure 4(c)). (a) µ = −3.30,
(b) µ = −3.11.

where we use superscript ‘m’ to indicate that the droplet phase has been replaced by the
monolayer as indicated by the representative plot of the local density in figure 6(b). However,
in the present case the local density in this monolayer no longer depends on x.

6. Summary and conclusions

This work is concerned with the phase behaviour of a prototype for fluids confined by
chemically heterogeneous substrates: a simple fluid (composed of structureless molecules)
constrained between two identical planar substrates that consist of weakly attractive stripes
alternating periodically with strongly attractive stripes in one transverse direction. The fluid is
treated as a lattice gas, the positions of molecules being constrained to sites of a simple cubic
lattice. At most a single molecule can occupy a given site. Only nearest-neighbour interactions
(attractions) are taken into account and these are described by square-well potentials: εff is
the well depth of the fluid–fluid attraction; εfw and εfs are the well depths of the attraction of a
fluid molecule for the strong and weak stripes, respectively. The model is characterized by the
well depths as well as by the dimensions of weak and strong stripes, nw and ns, the distance
between the substrates nz, the chemical potential µ, and the absolute temperature T .

We obtain an explicit expression for the exact grand potential at T = 0 in terms of model
parameters and the occupation numbers of the lattice sites si , which can be 0 or 1. We use
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this expression to determine the possible structural types of phase (morphologies) that can
exist (or coexist) at T = 0. Utilizing Bogoliubov’s variational principle, we derive mean-field
equations for the (ensemble) average occupation numbers ρ = {ρ1, ρ2, . . . , ρN } for T > 0.
Using the morphologies at T = 0 as starting trial solutions, we solve the Euler–Lagrange
equations iteratively for ρ, from which we obtain the corresponding grand potentials. In turn
we use the grand potentials as functions of µ and T to deduce the phase diagram for the
prototype. We also demonstrate that the mean-field solution becomes exact in the limit of
vanishing temperature.

To enumerate the possible morphologies at T = 0, we construct a hierarchy of modules
(each module yields a set of morphologies) of increasing complexity, starting with the simplest
module, namely that for the bulk, which yields the simplest morphologies—‘gas’ or ‘liquid’.
At any given level of the hierarchy the module is constructed by juxtaposing the simpler
modules of the previous level. Thus, the grand potential associated with the more complex
(composite) module is expressible as a sum of the grand potentials of the simpler modules, plus
a correction that accounts for the breaking of bonds (interactions) in the simpler modules and
the making of new bonds at the interfaces between these modules making up the composite.
Explicit analytic expressions for the grand potentials for the possible morphologies at T = 0
can be obtained in this way and used to determine which morphologies are stable over which
ranges of µ and consequently which morphologies can coexist.

For the prototype we find 16 possible morphologies, which are specified by sets of
occupation numbers M = {sw

0 , s
s
0, s

w
1 , s

s
1}, where the indices on s identify the region (slab) of

the system. However, depending on the parameters, only a limited subset can exist at T = 0.
The µ–T representation of the phase diagram at T = 0 consists of a set of points along the
ordinate. As T increases from 0, the mean-field solutions yield a µ–T phase diagram (µx(T ))
that ‘grows’ from these points. We explored two principal cases:

(a) εfw = 0.0, for which, in addition to the gas, bridge, and liquid morphologies, droplet and
vesicle morphologies also arise;

(b) εfw > 0.0, for which new ‘layered’ morphologies may appear, which involve more than
just a monolayer, despite the short-range nature of the fluid–substrate attraction.

This richness of the phase behaviour was missed altogether in all previous work employing
this [13–17] or closely related models [11,12] of fluids confined between chemically decorated
substrates.

For the hierarchy of modules considered here (see section 4.1), namely bulk, hard-
substrate, homogeneous, and heterogeneous, the number of possible morphologies enumerated
are 2, 2, 4, and 16, respectively. The number of stable morphologies, and consequently the
complexity of the phase diagram, seem to increase rapidly with the geometrical complexity
of the decoration of the substrates. An increase in complexity of the decoration is also
accompanied by a decrease in the symmetry of �. The extreme situation might be a fluid
in a ‘random’ porous medium, where � lacks symmetry entirely. The modular approach
to delineation of ‘morphologies’, which is based on the symmetry inherent in the modules,
would obviously be to no avail in the case of the random porous medium. Indeed, the possible
morphologies would seem to be as numerous as the ways of arranging 0s and 1s on the N
lattice sites, namely 2N . This would yield 2N densely bunched grand-potential curves (� 1030

for the case N = 200, as used for the calculations reported here), which would be impossible
to sort out in order to determine the ‘phase diagram’ at T = 0, let alone the complete phase
diagram. The use of morphologies as a basis for exploring the phase behaviour of this extreme
system breaks down. This is in accord with recent work by Tarjus et al, who consider sorption
isotherms in a random porous medium [27]. On the basis of a local mean-field approach
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similar to the one that we use here, they show that the true equilibrium states along the sorption
isotherm lie within an envelope of a large (if not infinite) number of metastable states.

The present study also has important implications for the determination of µx(T ) by
alternative techniques where the grand potential is not known as a functional of the local
density. For example, one can use Monte Carlo methods to obtain µx(T ) via thermodynamic
integration [28, 29]. Thermodynamic integration generally proceeds by starting from states
at T = 0, T = ∞ or µ = ±∞ where � can be estimated reliably [28, 29]. To obtain
� for the state of interest at some T and µ, one may determine � along a suitable path in
thermodynamic state space connecting initial and final states. This approach is based upon
the implicit assumption that the path does not cross a line of discontinuous phase transitions.
Finding such a path becomes crucial and non-trivial in more complex systems, as the present
work shows.
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Appendix A. Grand potentials for various morphologies at T = 0

Using (4.15), (4.16), and (4.17), we derive expressions for the grand potential of various
morphologies (designated by M = {sw

0 , s
s
0, s

w
1 , s

s
1}) of the lattice gas confined between

chemically striped substrates in the limit T = 0. The trivial one of these is the ‘gas’, that
is the empty lattice Mg = (0, 0, 0, 0), for which

�g(µ) ≡ 0. (A.1)

The simplest non-trivial morphology is the ‘droplet’ Md = (0, 0, 0, 1). Its grand potential is
given by

�d(µ) = ny

[
−2ns

(
ν − 2

2
+ µ

)
+ 2 − 2nsεfs

]
(A.2)

where ν (=6) is the number of nearest neighbours. Eventually, a ‘bridge’ morphology
(Mb = {1, 0, 1, 0}) characterized by

�b(µ) = ny

[
−nsnz

(
ν

2
+ µ

)
+ nz + ns − 2nsεfs

]
(A.3)

may form connecting the strongly attractive stripes of the substrates along the z-direction. It
is also conceivable that under favourable conditions a ‘vesicle’ (Mv = {1, 1, 1, 0}) may exist.
Its grand potential is given by

�v(µ) = ny

[
(2nw − nxnz)

(
ν

2
+ µ

)
+ 2 + nx − 2nsεfs

]
. (A.4)

Eventually, all lattice sites may be occupied to yield a morphology to which we refer as ‘liquid’
(Ml(1, 1, 1, 1)). The grand potential of this liquid is given by

�l(µ) = ny

[
−nxnz

(
ν

2
+ µ

)
+ nx − 2nsεfs − 2nwεfw

]
. (A.5)

The morphology having the smallest grand potential at a given value of µ is the thermo-
dynamically stable phase at T = 0. If �α(µαβ) = �β(µαβ) at a particular value of µαβ , the
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morphologies α and β coexist, provided that the common value of the grand potential is less
than �γ for any other morphology Mγ . Using the formulae for �α given in (A.1)–(A.5), we
can obtain closed expressions for the coexistence points µαβ as functions of the parameters of
the model.
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[10] de Gennes P G 1991 Rev. Mod. Phys. 64 645
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